论文:2014,Vol:32,Issue(3):337-340
引用本文:
王翔宇, 李栋. SST-SAS在小分离流动数值模拟中的表现测试[J]. 西北工业大学
Wang Xiangyu, Li Dong. Behavior of SST-SAS for Mild Airfoil Trailing-Edge Separation[J]. Northwestern polytechnical university

SST-SAS在小分离流动数值模拟中的表现测试
王翔宇, 李栋
西北工业大学 翼型叶栅空气动力学国防科技重点实验室, 陕西 西安 710072
摘要:
作为一种新型RANS/LES混合方法,基于SST湍流模型的尺度自适应模拟方法(SST-SAS)近来得到越来越多的关注。以AS239翼型最大升力点临界状态为数值模拟算例,测试了SST-SAS在小分离流动中的表现并与SST-DES和SST-DDES进行比较。结果显示,在翼型表面边界层处SAS能够克服DES中出现的网格诱导分离,得到了类似DDES延迟RANS的效果,同时在翼型尾迹区明显降低了小分离流动中强烈的灰区效应影响,尾迹涡结构比DDES更加清晰细密。
关键词:    SST-SAS    SST-DES    SST-DDES    小分离流动    网格诱导分离(GIS)    灰区   
Behavior of SST-SAS for Mild Airfoil Trailing-Edge Separation
Wang Xiangyu, Li Dong
National Key Laboratory of Aerodynamic Design and Research, Northwestern Polyteclnical University, Xi'an 710072, China
Abstract:
The Scale-Adaptive Simulation (SAS) based on SST turbulence model is more and more popular as a new hybrid RANS/LES method. The flow around AS239 airfoil at the maximum lift condition is simulated by SST-SAS to test its behavior in the mild separation. Compared with results from SST-DES and SST-DDES, SST-SAS on one hand overcomes the Grid Induced Separation (GIS) near the boundary like the delay of RANS in SST-DDES and on the other hand, it decreases the grey area in the wake and gets clearer vortexes and more accurate velocity profile than those obtainable with SST-DDES.
Key words:    airfoils    computer simulation    drag coefficient    flow separation    large eddy simulation    lift    Navier Stokes equations    pressure distribution    turbulence models    velocity distribution    vortex flow    wakes    grey area    Grid Induced Separation (GIS)    Large Eddy Simulation (LES)    SST-SAS    SST-DES    SST-DDES   
收稿日期: 2013-10-10     修回日期:
DOI:
基金项目: 国家自然科学基金(11072200)资助
通讯作者:     Email:
作者简介: 王翔宇(1989-),西北工业大学博士研究生,主要从事计算流体力学中RANS/LES混合方法研究。
相关功能
PDF(537KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王翔宇  在本刊中的所有文章
李栋  在本刊中的所有文章

参考文献:
[1] Spalart P R. Strategies for Turbulence Modeling and Simulations[J]. Int J Heat Fluid Flow, 2000, 21: 252-263
[2] Spalart P R, Deck S, Shur M L, Squires K D. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities[J]. Comput Fluid Dyn, 2006, 20: 181-195
[3] Strelets M. Detached Eddy Simulations of Massively Separated Flows[R]. AIAA Paper, 2001, 2001-0879
[4] Michel U, Eschricht D, Greschner B, et al. Advanced DES Methods and Their Application to Aeroacoustics[C]//Progress in Hybrid RANS-LES Modelling, 2010: 59-76
[5] Menter F R, Kuntz M, Bender R. A Scale-Adaptive Simulation Model for Turbulent Flow Predictions[R]. AIAA Paper, 2003:2003-0767
[6] Egorov Y, Menter F R. Development and Application of SST-SAS Turbulence Model in the DESIDER Project[C]//Progress in Hybrid RANS-LES Modelling, 2008: 261-270
[7] Christian Gleyzes, Patrick Capbern. Experimental Study of Two Airbus /ONERA Airfoils in Near Stall Conditions[J]. Aerospace Science and Technology, 2003, 7: 439-449
[8] Stefan Schmidtf, Rank Thiele. Detached Eddy Simulation of Flow around A-Airfoil[J]. Flow, Turbulence and Combustion,2003, 71: 261-278