论文:2012,Vol:30,Issue(3):402-406
引用本文:
孟宣市, 李华星, 唐花蕊, 罗时钧, 刘锋. 不同迎角下前体涡流动的等离子体控制特性[J]. 西北工业大学
Meng Xuanshi, Li Huaxing, Tang Huarui, Luo Shijun, Feng Liu. Exploring Flow Features of Conical Forebody Versus Angle of Attack under Plasma Actuation[J]. Northwestern polytechnical university

不同迎角下前体涡流动的等离子体控制特性
孟宣市1, 李华星1, 唐花蕊2, 罗时钧3, 刘锋3
1. 西北工业大学 翼型叶栅空气动力国家级重点实验室,陕西 西安 710072;
2. 昆明精密机械研究所,云南 昆明 650118;
3. 美国加州大学尔湾分校 机械与宇航工程系,92697-3975
摘要:
应用一对单介质阻挡放电等离子体激励器对20°顶角圆锥-圆柱组合体圆锥段分离涡流场进行了主动控制研究。实验在3.0 m×1.6 m低速风洞中进行,迎角35°~70°,基于圆锥段底面直径的雷诺数为5.0×104。实验结果包括7个测量截面周向压力分布、由周向压力分布推断得到的截面处空间涡结构以及积分得到的截面当地力和圆锥段力。实验结果表明:(1)在35°~50°迎角范围内,圆锥段流场只有一对非对称的主涡,圆锥段分离涡流动呈现近似锥型流特性,随着迎角增大,圆锥段侧向力系数符号不变;(2)在50°~70°迎角范围内,圆锥段流场呈现多涡结构,圆锥段分离涡流动不再呈现锥型流特性,此时随着迎角增大,圆锥段侧向力系数会发生多次变号;(3)等离子体控制使得圆锥段对涡流场中第1个新涡出现的迎角推迟。
关键词:    细长圆锥体    大迎角空气动力学    非对称分离涡    等离子体    主动流体控制   
Exploring Flow Features of Conical Forebody Versus Angle of Attack under Plasma Actuation
Meng Xuanshi1, Li Huaxing1, Tang Huarui2, Luo Shijun3, Feng Liu3
1. Northwestern Polytechnical University, Xi'an 710072, China;
2. Kunming Precision Machinery Research Institute, Kunming 650118, China;
3. University of California, Irvine, CA 92697-3975
Abstract:
A pressure measurement experimental study of the active control of vortices over slender forebodies wasperformed on a 20° circular cone forebody using a pair of Single-Dielectric Barrier Discharge (SDBD) plasma actu-ators. Section 1 of the full paper explains our exploration mentioned in the title. Its core consists of: " The testswere performed in the NWPU low-turbulence 3. 0 m × 1. 6 m low-speed wind tunnel at angles of attack of 35° ~70°. The Reynolds number based on the base diameter of the circular cone is 50 000. The results consist of de-tailed pressure distributions over seven stations along the cone with and without plasma control. From the measuredpressures,the local side forces over the cone are calculated and the vortex patterns are inferred. " The experimentalresults,presented in Figs. 3 through 7 and Table 1, and their analysis indicate preliminarily that: (1) at the anglesof attack of 35° ~50°, there exists just a pair of primary asymmetric vortices,the flowfields are the nearly conicalflow; with increased angles of attack,the overall side force remains of the same sign; (2) at the angles of attack of50° ~70°,the flowfields are no longer the conical flow and a multi-vortex pattern occurs; with increased angles ofattack,the overall side force experiences the sign change several times; (3) the occurrence of the first additionalvortex besides the initial vortex pair is delayed to a higher angle of attack due to the plasma actuation.
Key words:    aerodynamics    experiments    flow control    measurements    plasmas    pressure distribution    schematicdiagrams    vortex flow    wind tunnels;actuation    asymmetric vortex flow    high angle of attack aerody-namics    slender circular cone   
收稿日期: 2011-06-08     修回日期:
DOI:
基金项目: 国家自然科学基金(51107101,11172243);高等学校博士学科点专项科研基金(2009610212000);西北工业大学基础研究基金(JC201218);中国博士后科学基金(20100471000)资助
通讯作者:     Email:
作者简介: 孟宣市(1976-),西北工业大学副教授、博士,主要从事大迎角空气动力学及流动控制研究。
相关功能
PDF(1894KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孟宣市  在本刊中的所有文章
李华星  在本刊中的所有文章
唐花蕊  在本刊中的所有文章
罗时钧  在本刊中的所有文章
刘锋  在本刊中的所有文章

参考文献:
[1] Ericsson L.Sources of High Alpha Vortex Asymmetry at Zero Sideslip.Journal of Aircraft,1992,29(6): 1086-1090
[2] 顾蕴松,明 晓.大迎角细长体侧向力的比例控制.航空学报,2006,27(5): 746-750Gu Yunsong,Ming Xiao.Proportional Side Force Control of Slender Body at High Angle of Attack.Acta Aeronautica et Astro-nautica Sinica,2006,27(5): 746-750 (in Chinese)
[3] Liu F,Luo S J,Gao C,Meng X S,Hao J N,Wang J L,Zhao Z J.Flow Control over a Conical Forebody Using Duty-CycledPlasma Actuators.AIAA J,2008,46(11): 2969-2973
[4] Liu F,Luo S J,Gao C,Wang J L,Zhao Z J,Li Y Z,Hao J N.Mechanisms for Conical Forebody Flow Control Using PlasmaActuators.AIAA-2009-4284
[5] Lamont P J.Pressures around an Inclined Ogive Cylinder with Laminar,Transitional,or Turbulent Separation.AIAA J,1982,20(10): 1492-1499
[6] Keener E R.Oil Flow Separation Patterns on an Ogive Forebody.AIAA Journal,1983,21(4): 550-556
[7] Fiddes S P,Smith J H.Calculations of Asymmetric Separated Flow Past Circular Cones at Large Angles of Incidence.AGARDCP 336,1982,14
[8] 孟宣市,乔志德,高 超,罗时钧,刘 锋.20°圆锥分离流动发展特性.西北工业大学学报,2010,28(5): 655-659Meng Xuanshi,Qiao Zhide,Gao Chao,Luo Shijun,Liu Feng.Exploring Cause of Asymmetric Vortex Flow over Slender Circu-lar Cone at High Angle of Attack.Journal of Northwestern Polytechnical University,2010,28(5): 655-659 (in Chinese)
[9] Dyke M V.An Album of Fluid Motion.Parabolic Press,Stanford CA,1982
[10] Hanff E,Lee R,Kind R J.Investigations on a Dynamic Forebody Flow Control System.Proceedings of the 18th InternationalCongress on Instrumentation in Aerospace Simulation Facilities,Inst.of Electrical and Electronics Engineers,Piscataway,NJ,1999,28/1-28/9
[11] Keener E R,Chapman G T,Cohen L,Taleghani J.Side Forces on Forebodies at High Angle of Attack and Mach Numbers from0.1 to 0.7: Two Tangent Ogives,Paraboloid and Cone.1977,NASA TM X-3438