论文:2012,Vol:30,Issue(2):169-174
引用本文:
关晓辉, 李占科, 宋笔锋. 基于FCE方法的超声速机翼厚度分布优化[J]. 西北工业大学
Guan Xiaohui, Li Zhanke, Song Bifeng. Exploring Optimization of Supersonic Wing Thickness Distribution Using FCE (Far-field Composite Element) Method[J]. Northwestern polytechnical university

基于FCE方法的超声速机翼厚度分布优化
关晓辉, 李占科, 宋笔锋
西北工业大学 航空学院,陕西 西安 710072
摘要:
远场组元(Far-field Composite Element,FCE)激波阻力优化方法是基于类别形状函数变换(Class Shape Transformation,CST)参数化方法发展出的一种超声速飞行器气动外形优化方法。文章使用CST参数化方法对超声速客机的大后掠机翼进行外形参数化,并以机翼容积和局部相对厚度为约束条件,使用FCE方法对其厚度分布进行以激波阻力最小为设计目标的快速优化。与原机翼相比,FCE优化方法使机翼激波阻力系数降低达61%,是超声速飞行器概念设计阶段降低激波阻力十分有用的优化方法。
关键词:    FCE    CST    超声速飞行器    减阻    参数化    外形优化   
Exploring Optimization of Supersonic Wing Thickness Distribution Using FCE (Far-field Composite Element) Method
Guan Xiaohui, Li Zhanke, Song Bifeng
College of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China
Abstract:
Developed from the class shape transformation (CST) geometric parameterization method, the FCE wavedrag optimization method is a new aerodynamic shape optimization method for supersonic aircraft. We use the CSTparameterization method to perform the shape parameterization of a typical and large swept wing model of a super-sonic aircraft. Sections 1 and 2 of the full paper explain our exploration, whose core consists of: (1) under theconstraints of the total volume and local thicknesses of the swept wing, we carry out the quick optimization of thewing thickness distribution, aiming to achieve minimum wave drag; (2) we use the supersonic area rule to calcu-late the wave drag and to optimize the shape parameters of the swept wing with the Lagrange multiplier method, thusrequiring no iteration and reducing computation complexity. The optimization results, given in Table 1 and Figs. 4, 5 and 6, and their analysis show preliminarily that, compared with the baseline wing model, our optimization meth-od can reduce the wave drag coefficient by 61%, thus being a useful method for aerodynamic shape optimization soas to reduce the wave drag at the stage of the conceptual design of a supersonic aircraft.
Key words:    algorithms    calculations    computational complexity    computational geometry    conceptual design    con-strained optimization    drag coefficient    drag reduction    Lagrange multipliers    models    parameteriza-tion    shape optimization    shock waves    supersonic aerodynamics    supersonic aircraft    swept wings    thickness control    three dimensional    transport aircraft;Far-field Composite Element (FCE)    ClassShape Transformation (CST)    wave drag   
收稿日期: 2011-05-21     修回日期:
DOI:
通讯作者:     Email:
作者简介: 关晓辉(1987-),西北工业大学博士研究生,主要从事飞行器总体设计的研究。
相关功能
PDF(617KB) Free
打印本文
把本文推荐给朋友
作者相关文章
关晓辉  在本刊中的所有文章
李占科  在本刊中的所有文章
宋笔锋  在本刊中的所有文章

参考文献:
[1] Straathof M H, Van Tooren M J L, Voskuijl M, et al. Aerodynamic Shape Parameterisation and Optimisation of Novel Configu-rations. Proceedings of the RAeS Aerodynamic Shape Parameterisation and Optimisation of Novel Configurations Conference.London: Royal Aeronautical Soc, 2008:1-14
[2] Kulfan B M, Bussoletti J E.“Fundamental”Parametric Geometry Representations for Aircraft Component Shapes. AIAA-2006-6948, 2006
[3] Kulfan B M. Recent Extensions and Applications of the“CST”Universal Parametric Geometry Representation Method. AIAA-2007-7709
[4] Kulfan B M. A Universal Parametric Geometry Representation Method -“CST”. AIAA-2007-62
[5] Ceze M, Hayashi M, Volpe E. A Study of the CST Parameterization Characteristics. AIAA-2009-3767
[6] Jones R T. Theory of Wing-Body Drag at Supersonic Speeds. NACA-RM-A53H18A, 1953
[7] Nikolic V, Jumper E J. Zero-Lift Wave Drag Calculation Using Supersonic Area Rule and Its Modifications. AIAA-2004-217
[8] Kulfan B M. New Supersonic Wing Far-Field Composite-Element Wave-Drag Optimization Method , “FCE”. AIAA-2008-132
相关文献:
1.粟华, 谷良贤, 龚春林.基于高拟真度模型的再入飞行器多学科优化[J]. 西北工业大学, 2013,31(3): 339-344
2.卜月鹏, 宋文萍, 韩忠华, 许建华.基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学, 2013,31(5): 829-836