基于扩展有限元研究非均质材料的应力强度因子 -- 西北工业大学,2014,32(1):62-68
论文:2014,Vol:32,Issue(1):62-68
引用本文:
苏毅, 王生楠, 刘俭辉. 基于扩展有限元研究非均质材料的应力强度因子[J]. 西北工业大学
Su Yi, Wang Shengnan, Liu Jianhui. Investigation of Stress Intensity Factors for Nonhomogeneous Materials Using Extended Finite Element Method[J]. Northwestern polytechnical university

基于扩展有限元研究非均质材料的应力强度因子
苏毅, 王生楠, 刘俭辉
西北工业大学 航空学院, 陕西 西安 710072
摘要:
用含裂纹尖端增强函数的扩展有限元借助相互作用积分,研究静态载荷作用下颗粒增强复合材料的断裂行为。假定基体和颗粒都是弹性材料,研究不同颗粒位置对基体裂纹尖端的应力强度因子的影响。用MATLAB编程,数值模拟了中心裂纹,单边裂纹扩展和孔边裂纹扩展,含刚性颗粒和柔性颗粒时裂纹尖端不同的应力强度因子或能量释放率的变化。
关键词:    相互作用积分    扩展有限元法    裂纹尖端    应力强度因子   
Investigation of Stress Intensity Factors for Nonhomogeneous Materials Using Extended Finite Element Method
Su Yi, Wang Shengnan, Liu Jianhui
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The extended finite element method(XFEM) containing crack tip enhancement function is used to study the fracture behavior of particle filled composites under static loading with the help of interaction integration. In this paper both the matrix and particles are supposed to be elastic materials. Based on this assumption the effect of particles' location on the stress intensity factor is discussed. In addition both the fixed crack and crack propagation are modeled by the commercial software MATLAB. The model with rigid particles and the model with flexible particles are considered respectively and their analysis indicate that the variation of stress intensity factor and the variation of energy release rate for the model with rigid particles are both respectively different from those for the model with flexible particles.
Key words:    composite materials    crack propagation    crack tips    energy release rate    finite element method    fracture    functions    MATLAB    matrix algebra    numerical methods    stiffness matrix    stress intensity factors    interaction integral    extended finite element method(XFEM)   
收稿日期: 2013-04-21     修回日期:
DOI:
通讯作者:     Email:
作者简介: 苏毅(1982-),女,西北工业大学博士研究生,主要从事飞机结构疲劳断裂可靠性及损伤容限研究。
相关功能
PDF(845KB) Free
打印本文
把本文推荐给朋友
作者相关文章
苏毅  在本刊中的所有文章
王生楠  在本刊中的所有文章
刘俭辉  在本刊中的所有文章

参考文献:
[1] Daux C, Mos N, Dolbo W J, Sukumar N, Belytschko T. Arbitrary Branched and Intersecting Cracks with the Entended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 2000, 48: 1741-1760
[2] Mos N, Dolbow J, Belytschko T. A Finite Element Method for Crack Growth without Remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46: 131-150
[3] Sukumar N, Srolovitz D J, Baker T J, Prevost J H. Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 1999, 45: 601-620
[4] Zhang H H, Li L X. Modeling Inclusion Problems in Viscoelastic Materials with the Extended Finite Element Method[J]. Finite Elements in Analysis and Design, 2009, 45: 721-729
[5] Asadpoure A, Mohammadi S. Developing New Enrichment Functions for Crack Simulation in Orthotropic Media by the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 2007, 69: 2150-2172
[6] 王志勇, 马力, 吴林志, 于红军. 基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究[J]. 固体力学学报,2011, 32(6): 566-573 Wang Zhiyong, Ma Li, Wu Linzhi, Yu Hongjun. Investigation of Static and Dynamic Fracture Behavior of Particle-Reinforced Composite M aterials by the Extended Finite Element M ethod[J]. Chinese Journal of Solid M echanics, 2011, 32(6): 566-573 (in Chinese)
[7] Melenk J M, Bubska I. The Partition of the Unity Finite Element Method: Basic Theory and Applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289-314
[8] Duarte G A, Oden J T. An H-P Adaptive Method Using Clouds[J]. Computer Methods in Applied Mechanics and Engineering,1996, 139: 237-262
[9] Yu H J, Wu L Z, Guo L C, Du S Y, He Q L. Investigation of Mixed-Mode Stress Intensity Factors for Nonhomogeneous Materials Using an Interaction Integral Method[J]. International Journal of Solids and Structures, 2009, 46: 3710-3724
[10] 张行. 断裂力学[M]. 北京: 中国宇航出版社, 1990 Zhang Hang. Fracture Mechanics[M]. Beijing: China Aerospace Press, 1990 (in Chinese)
[11] Laborde P, Pommier J, Renard Y, Salaun M. High-Order Extended Finite Element Method for Cracked Domains[J]. International Journal for Numerical Methods in Engineering, 2005, 64: 354-381
[12] Mousavi S E, Xiao H, Sukumar N. Generalized Gaussian Quadrature Rules on Arbitrary Polygons[J]. International Journal for Numerical Methods in Engineering, 2010, 82: 99-113
[13] Natarajan S, Bordas S, Mahapatra D R. Numerical Integration over Arbitrary Polygonal Domains Based on Schwarz-Christoffel Conformal Mapping[J]. International Journal for Numerical Methods in Engineering, 2009, 80: 103-134
[14] Wang Y B, Chau K T. A New Boundary Element Method for Mixed Boundary Value Problems Involving Cracks and Holes: Interactions between Rigid Inclusions and Cracks[J]. International Journal of Fracture, 2001, 110: 387-406