状态分量综合修正加速度方差的CSM算法 -- 西北工业大学,2014,32(1):6-11
论文:2014,Vol:32,Issue(1):6-11
引用本文:
黄长强, 封普文, 曹林平, 黄汉桥, 程华. 状态分量综合修正加速度方差的CSM算法[J]. 西北工业大学
Huang Changqiang, Feng Puwen, Cao Linping, Huang Hanqiao, Cheng Hua. A Target Tracking Algorithm Based on Current Statistical Model for Adjusting Acceleration Variance of Maneuver Target[J]. Northwestern polytechnical university

状态分量综合修正加速度方差的CSM算法
黄长强1,2, 封普文1, 曹林平1, 黄汉桥1,2, 程华1
1. 空军工程大学 航空航天学院, 陕西 西安 710038;
2. 西北工业大学, 陕西 西安 710072
摘要:
"当前"统计模型自适应算法依赖于先验加速度极限值,并不适用所有机动情况。而单一的位置或速度自适应调整加速度方差,往往使得跟踪不稳定。综合考虑位置、速度和加速度信息,提出一种新加速度自适应公式,克服了对先验加速度极限值的依赖。并在此基础上结合高斯隶属函数对其权值予以修正,提高了跟踪精度。为解决单个"当前"统计模型不能跟踪机动频率不断变化实际目标,利用交互多模算法,将不同机动频率的改进"当前"统计模型进行交互。仿真结果表明,新算法具有较好的跟踪效果。
关键词:    机动目标跟踪    当前统计模型    加速度方差    状态分量    交互式多模型   
A Target Tracking Algorithm Based on Current Statistical Model for Adjusting Acceleration Variance of Maneuver Target
Huang Changqiang1,2, Feng Puwen1, Cao Linping1, Huang Hanqiao1,2, Cheng Hua1
1. College of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an, 710038, China;
2. Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
An adaptive algorithm based on current statistical model(CSM) relies on the a priori acceleration limit value of a maneuver target and is not suitable for all the maneuver situations. The adjustment of acceleration variance only by position or velocity of the maneuver target leads to unstable tracking. Its position,velocity and acceleration are used together to adjust the acceleration variance,thus forming a new adaptive acceleration formula,which can overcome the reliance on the a priori acceleration limit value. We also use the membership function to correct the weights of the position,velocity and acceleration,thus enhancing the tracking accuracy. Because a single CSM cannot track the target whose maneuver frequency is constantly changing,three CSMs with different maneuver frequencies are interacted with the interactive multiple models to adaptively select the maneuver frequency. The simulation results,given in Figs. 1 through 12,and their analysis show preliminarily that the target tracking algorithm can adaptively adjust the acceleration variance and has a higher tracking accuracy than the algorithms that adjust the acceleration variance only with position or velocity.
Key words:    acceleration    adaptive algorithms    maneuverability    matrix algebra    membership functions    statistical methods    target tracking    acceleration variance    current statistical model    interactive multiple model    maneuver frequency   
收稿日期: 2013-05-16     修回日期:
DOI:
基金项目: 航空科学基金(20105196016)资助
通讯作者:     Email:
作者简介: 黄长强(1962-),空军工程大学教授、博士生导师,主要从事武器系统与运用工程研究。
相关功能
PDF(631KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄长强  在本刊中的所有文章
封普文  在本刊中的所有文章
曹林平  在本刊中的所有文章
黄汉桥  在本刊中的所有文章
程华  在本刊中的所有文章

参考文献:
[1] Li X R, Jilkov V R. Survey of M aneuvering Target Tracking P art I: Dynamic Models[J]. IEEE Trans on Aerospace and Electronic System, 2003, 39(4): 1334-1364
[2] Tafti A D, Sadati N. A Hybrid Fuzzy Adaptive Tracking Algorithm for Maneuvering Targets[C] ∥IEEE International Conference on Fuzzy System, HongKong: IEEE, 2008: 1869-1873
[3] Wang Wei, Hou Honglu. An Improved Current Statistical Model for Maneuvering Target Tracking[C] ∥ ICIEA 2009, Xi'an, China, 2009: 4017-4020
[4] Sheng Hu, Yang Jingshu, Zeng Fangling, et al. Interacting Multiple Model Tracking Algorithm with Modified Input Estimation [J]. Acta Electronica Sinica, 2009, 37(12): 2810-2814
[5] Qu Hongquan, Pang Liping, Li Shaohong. A Novel Interacting Multiple Model Algorithm[J]. Signal Processing, 2009, 89 (11): 2171-2177
[6] 李辉, 沈莹, 张安. 机动目标跟踪中一种新的自适应滤波算法[J]. 西北工业大学学报, 2006, 24(3): 354-356 Li Hui, Shen Ying, Zhang An, Cheng Cheng. A New Adaptive Filtering Algorithm in Maneuvering Target Tracking[J]. Journal of Northwestern Polytechnical University.2006, 24(3): 354-357 (in Chinese)
[7] 王芳, 冯新喜, 李鸿艳. 一种新的自适应滤波算法[J]. 现代雷达, 2003(3): 33-35 Wang Fang, Feng Xinxi, Li Hongyan. A Novel Adaptive Filtering Algorithm[J]. Modern Radar, 2003(3): 33-35 (in Chinese)
[8] Naidu Vps, Raol J R. Performance Evaluation of Inter-Acting Multiple Model Kalman Filter[J]. IETE Journal of Education,2008, 49(3): 95-108
[9] Li X R, Jilkov V R.Survey of Maneuvering Target Tracking Part I: Dynamic Models[J]. IEEE Trans on Aerospace and Electronic System, 2003, 39(4): 1334-1364