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Dynamics and Proportional-derivative Control of 3-link Planar Manipulator
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Abstract ; In this paper, an effective dynamic equation of a three link manipulator for a control purpose has been
dealt with by the Euler-Lagrange method. The structural properties of the derived dynamic equation were proved
so that the vast control strategies developed for the serial counterparts can be easily extended for controlling the
three link manipulator. In addition, it is illustrated how to design a PD controller for the robot manipulator by
making use of computed torque method strategy to develop our controller. Simulation results are included in order
to depict the performance of the controller.
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1 Introduction

In robotics, a manipulator is a device used to manipulate
materials without direct contact. The applications were originally
for dealing with radioactive or bio hazardous materials, using
robotic arms, or they were used in accessible places. In more
recent developments, they have been used in applications such as
robotically-assisted surgery and in space. The Euler-Lagrange
equations give an expression of the dynamic equations of motion Figure 1 Three-link planar manipulator

corresponding to those which may be obtained using Newton's

second law. But the Lagrangian formalism is helpful for more difficult systems, such as multi-link robots.

To understand the complexity, we may take example of three degree of freedom robot manipulator movement.
The total energy which is sum of kinetic energy and potential energy of the three link system is defined and used

to form Lagrangian equations. Finally, to define the torque applied on each link these equations are used''’.

With the increase in performance demands for robotic manipulators during the last several years, a major
need has arisen to design a new generation of manipulators that are lighter, faster, more controllable, and easier
to program'>'. The reasonable dynamic modeling is a necessary premise to design efficient control strategies'”’ .
The Euler-Lagrange equations give an expression of the dynamic equations of motion corresponding to those which
may be obtained using Newton's second law. But the Lagrangian formalism is helpful for more difficult systems,
such as multi-link robots. Modeling of 3-link planar manipulator involves the linear and rotational dynamics of the
links'*. Several control strategies have been reported for control of these manipulators which include a
proportional derivative (PD) controller, optimal control, adaptive control, fuzzy logic control and decomposed
dynamic control. Several robust controllers have also been proposed for control of these manipulator systems'*’.

Computed-torque control allows us to conveniently derive very effective robot controllers while providing a frame
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work to bring together classical independent joint control and some modem design techniques. The author follows
this strategy to develop our controllers'®'. The PD controller is for point to point motion control, while the PID
controller is for vibration suppression'”’. PD control method is widely utilized for the dynamic characteristics
controlling in industrial robot manipulator area'®’. For industrial robot manipulator system, PD control theory is
extensively used in the dynamic characteristics controlling. A PD robust controller is introduced to optimize the
stability and convergence of traditional PD controller and avoid excess initial driving torque for two-link industrial

manipulator system'’ .

The author has computed the inertia tensor for each link to synthesize PD laws of joint torques by developing

the Matlab codes using the OriginTM software to plot and depict the simulation results.

2 Methodology

2.1 Inertia tensor computation
Let us consider the dynamics of robot manipulators. Since the dynamic equations describe the relationship
between force and motion thoroughly, therefore the equations of motion are important to consider in the design of

robots, in simulation and animation of robot motion, and also in the design of control algorithms.

In order to determine the Fuler-Lagrange equations in a specific situation, the Lagrangian of the system is

formed, which is in fact the difference between the kinetic energy and potential energy.

The Euler-Lagrange equations have properties that can be employed to design and analyze the feedback

control algorithms, that is

ey (1)

Where, L is a function of system which is the difference between the kinetic energy (K.E) and potential energy (P.E).

Generally, for any system, an application of the Euler-Lagrange equations governs a system of n coupled

second order non-linear differential equations of the form, that is
", (2)

The order n of the system is found by the number of generalized coordinates that are necessary to depict the

development of the system.

A commonly used convention for selecting frames of reference in robotic applications is the Denavit-
Hartenberg, or DH convention. In this practice, each homogeneous transformation is considered as a product of
four basic transformations.

A; = Rot, , Trans, , Trans, , Rot, (3)
Where ; the four quantities are parameters which are generally given the names link length, link twist, link offset
and joint angle respectively and are derived from specific aspects of the geometric relationship between two

coordinate frames.

The matrix A, is the homogeneous transformation matrix that expresses the position and orientation of 0,x;y,z,

with respect to o,_,x,_,¥,.,z._,- It is not a constant matrix but varies as the configuration of the robot is changed.

To consider the assumption that all joints are either revolute or prismatic means that A, is a function of only

a single joint variable, namely ¢; is
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A, =A4(q,) (4)
Since the matrix A, is a function of a single variable, so the three of the above four quantities are constant for

a given line, while the fourth parameter, 6, for a revolute joint and d, for a prismatic joint, is the joint variable.

The n Denavit-Hartenberg joint variables serve as a set of generalized coordinates for an n-link rigid robot. For
the case of an n-link robotic manipulator, we can express the K.E and P.E of the system in terms of a set of

generalized coordinates considering the Fuler-Lagrange equations which can be used to derive the dynamic equations.

As the Kinetic energy of a rigid object is the sum of two terms: the translational energy obtained by
concentrating the entire mass of the object at the center of mass and the rotational K.E of the body about the

center of the mass.

Considering the Figure 2

rkx_ ] X

rrrr7

Figure 2 Three link planar robot manipulator

The K.E of the rigid body is given as

1 1
K=—mv"v + —o'lo (5)
2 2
and
” r—rn || =] or (rl _r2>T(rl _r2> =2 (6)

Where; m represents the total mass of the object; v is the linear velocity vectors; w is the angular velocity

vectors; I is symmetric matrix called Inertia Tensor.
Here, the linear and angular velocity vectors v and w respectively, are expressed in the inertial frame.

Also, w is found from the skew symmetric matrix

S(w) = RR" (7)
Where, R is the orientation transformation between the body attached frame and the inertial frame. A matrix S,
is said to be Skew Symmetric if and only if §*+8=0. It is necessary to express the inertia tensor, I also in the
inertial frame in order to compute the triple product. The inertia tensor relative to the inertial reference frame will
depend on the configuration of the object. To denote as I the inertia tensor expressed instead in the body attached

frame, the two matrices are related via a similarity transformation.

Here, the inertia matrix expressed in the body attached frame is a constant matrix independent of the motion

of the object and can be easily computed.
I = RIR" (8)
Suppose the matrix density of the object be represented as a function of position p(«x,y,z). Then the inertia

tensor in the body attached frame is computed as
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Ixx Ix) Ixz
1=\1, I, I, (9)
I, I, 1

These integrals are computed over the region of space occupied by the rigid body. The diagonal elements of
the inertia tensor /., [, I are called the principal moments of inertia about the x,y,z axes, respectively. The off
diagonal terms I ,I_,I _,I I, I are called the cross products of inertia. If the mass distribution of the body is

xy 2T xz Y yz YT yx T zx T zy

symmetric with respect to the body attached frame, then the cross products of inertia are identically zero. The z-
axes all point out of the page, and are not shown in the figure. As we know that in 3D case here, target frame is

frame 1 and reference frame is frame O.

RY =[x+ ) 2] (10)
cosf — sinf 0
x)=|sinf|,y) =] cosf |,z)=]0 (11)
0 0 1

In this case, the rotation matrix R is the orientation transformation between the body attached frame and the
inertial frame.
XXy Vi-Xy  Z-%
R? =XYoo YirYo Z1rYo (12)
X-2g  Y1-20  Z1-Zp
From Equation (8) and Equation (9), we see that I; is the inertia tensor expressed in the inertial frame,

I, is the inertia tensor expressed in body attached frame.

Since the mass distribution of the body is symmetric with respect to the body attached frame, then the cross

products of inertia are identically zero.

2.2 Deriving the equations of motion in matrix form
The dynamic model is expressed as
D(q)§ +C(q,9)q +g(q)=u (13)
Where ; the inertia matrix D is a symmetric positive definite matrix that is in general configuration dependent
matrix; C(q,q) is 3X3 vector of Coriolis and centrifugal torques; g(¢q) is N-vector of gravitational torques; u is
3x1 vector of the actuating torques; § is 3X 1 vector of the joint accelerations; ¢ is 3x 1 vector of the joint
velocity; g is a vector of the joint position.

0, 1If joint i is revolute

i

q; = (14)

d, 1If joint ¢ is prismatic
In the case of joints, with the i-th joint, ¢ associate a joint variable, denoted by ¢,. A constraint on the k
coordinates (r,,---,r,) is called holonomic if it is an equality constraint of the form g,(r,,--,r,)=0, i=1,--,

[, and non-holonomic otherwise.

The forward kinematic equations define a function between the space of Cartesian positions and orientations
and the space of joint positions. The velocity relationships are then determined by the Jacobian of this function.

The Jacobian is a matrix that can be thought of as the vector version of the ordinary derivative of a scalar function.

For an n-link manipulator, we first derived the Jacobian representing the instantaneous transformation
between the n-vector of joint velocities and the 6-vector consisting of the linear and angular velocities of the end-
effector. This Jacobian is then a 6Xn matrix. The same approach is used to determine the transformation between

the joint velocities and the linear and angular velocity of any point on the manipulator.
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A moving coordinate frame has both a linear and angular velocity. Linear velocity describes velocity of its

origin ( moving point) .

If
R(t) € SO(3) (15)
Then
R(1) =S(w(1))R(1) (16)
Where, w(t) is the instantaneous angular velocity of the frame. The operator S gives a skew symmetric matrix.
0 -w, o,
S(w)=| o, 0 -w, (17)
-0, o, 0

The manipulator Jacobian relates the vector of joint velocities to the body velocity £= (v,w)" of the end

effector, shown as

£=Jq (18)
This relationship can be written as two equations, one for linear velocity and one for angular velocity, shown as
U:qu, w:Ju)q (19)

The i-th column of the Jacobian matrix corresponds to the i-th joint of the robot manipulator and takes one of
the two forms depending on whether the i-th joint is prismatic or revolute.

ziy X (0, —0,_)) C
If joint i is revolute
z,_,

i-

J = (20)

Zi-1 C . .
0 If joint i is prismatic

As the body rotates, a perpendicular from any point of the body to the axis sweeps out an angle 8, and this
angle is the same for every point of the body. If K is a unit vector in the direction of the axis of rotation, then the

angular velocity is given by
= 0K (21)
Where,  is the time derivative of 6. The linear velocity of any point on the body is
vV=w Xr (22)

Where, r is a vector from origin.

Consider a manipulator consisting of n-links. The linear and angular velocities of any point on any link can
be expressed in terms of the Jacobian matrix and the derivative of the joint variables. For this case, the joint

variables are indeed the generalized coordinates.

For appropriate Jacobian matrices Ju; and Jw,
v, = Ju,(q)q (23)
w; =Jo.(q)q (24)
Suppose mass of link 7 is m; and inertia matrix of link ¢ is /,(inertia matrix of link i, evaluated around a
coordinate frame parallel to frame ¢ whose origin is at the center of mass, equals I,). We can derive the formula
expressions for the kinetic energy and potential energy of a rigid robot using the Denavit-Hartenberg ( DH) joint

variables as generalized coordinates.

From Equation (6) and Equation (8), it follows that the overall kinetic energy of the manipulator equals
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o1 1
K = z [?miv?vi + ?(1)?[,;(1)[} (25)
i=1

Using Equation (14) and Equation (15), we have

1 . 1
K=—q' 2; [mJv,(q)" Jv(q) +Jw,(q)"R(¢)IR(q)" Jw,(q)]1¢d=—4"D(q)q

2 2
From Equation (18) after substituting the results, we can get
d, d, d;
D(q)=|dy dy dy (26)
dy dy  di

Now, we will find the matrix C(gq,q) i.e. C(6,0).

The k, j-thelement of the matrix C(q,q ) is defined as

n

Cr = zcijk<q>qi (27)

=
1(od,; od, dd,;

Cp =l — -
2d9q; dq;  9q,

The terms in Equation (28) are called as Christoffel symbols (of the first kind) for our three-link manipulator

(28)

case,

dq;, dq, Oq,

Sinceis concerned with potential energy, so we will not consider this factor in our case. Also, 7, is the

Cii = zcijk(q>qi = z 7

i=1 i=1

3 501 (0d,  ad, od,
{ T - }q (29)

control input.

As we know that the complete dynamic model of an n-degrees-of-freedom manipulator is described by the

matrix form of Euler-Lagrange equations

D(q)§ +C(q.9)q +8(q) =7 (30)
Where: D(q) is 3%3 position dependent manipulator inertia matrix; g(¢q) is n-vector of gravitational torques,

which we have not considered in our case.

Therefore, the author get

D(q)§ +C(q.9)qg =7 (31)
In matrix form
dy, dy, dy 0, € Cpp Cp3 0, T
21 »n dy O, t|Cu Cn Cu||0,|=|T (32)
ds, 2 33 (9'% €31 €3 C33 93 T3

2.3 Synthesize PD law
Now we will synthesize PD or PID laws of joint torques so as to stabilize the three-link around a reference

configuration that all the joints angles are of zero value.

Proportional-integral-derivative controller which is commonly known as PID controller is described as a
control loop technique. It is mostly used for industry related applications. An important function of PID controller
is to constantly determine an error value e () as the difference between a required set point and a computed
process variable and applies a correction depending on proportional, integral, and derivative terms which are

denoted by P, I and D, respectively. That is why, it is commonly known as a PID controller.
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In frequency domain, PID controller is expressed as

d —_—
U(s)=K,(0'(s) = O(s)) - K;s0(s) +1<,¢M (33)
s
In time domain using Inverse Laplace transformation, we have
u(t) =K,(0(t) - 0O(1)) - K,0(1) + K,f [O(1) —O(1) ]dt (34)
0

Proportional-derivative (PD) control is useful for fast response controllers that do not need a steady-state
error of 0. Proportional controllers are fast. Derivative controllers are fast. The two together is very fast.

Proportional-Derivative or PD control combines proportional control and derivative control in parallel.

In order to reject a constant disturbance using PD control, large gains are often required. The input U(s) is

given in frequency domain as

U(s) =K,(0'(s) = 0(s)) - K;sO(s) (35)
Here, if we consider @*(s)= 0. So the above equation takes the form
U(s)==K,0(s) - K;s0(s) (36)
By using Inverse Laplace transformation, it can be expressed in the time domain as
u(t) == K,0(1) - K,0(1) (37)
Now, for our case, since we have
D(q)§ +C(q.,q9)=7 (38)
Since we are considering PD controller here, so
T:_qu_Krlq (39>
Now, we want to convert the second order system into the first order by substitution method as follows ;
q=p (40)
From Equation (38) and Equation (40), we have the expression as
e (41)
D(q)p +C(q.p)p =7
From Equation (39)
7=-Kq-Kp (42)
Now
q3x
X { ’ ‘} (43)
Pixi1 6x1
Kp ZKd :I3><3 (44>
Equation (28) can be rewritten as follows.
E3><3 O . p}xl
X6><1 = (45>
0 D(q)s 66 = C(q,p) 3xaP3x1 + Tax ox1
Where :
, 0, 6, 10 0
. q ) ) ) .
X6><l = l:p:| ’ q = 02 ’ P = 02 5 E3><3 = O 1 0 N
0-3 53 0 0 1

Now, we will compute the matrix C(¢q,q) i.e. the matrix C( 0,0) in symbolic form as

MX =N, X=M"N, dX =M"'N (46)
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So, we have

i

0’_[1 0
1o Do)

0

-C(0,0)0 +7

(47)

Using an additional line spacing of 12 points before the beginning of the double column section, as shown above.

3 Simulation results and analysis

The author has developed MATLAB codes for simulating the system dynamics in the presence of the toque

control inputs, and use OriginTM software to plot and depict the simulation results.

Figure 3 ~Figure 8 describe the simulation results. Here, we have considered the units of angle and time as

radian and second respectively. From Figure 3 ~ Figure 5, the angles represent the position of respective links

with respect to their corresponding x-axis. The author can see a significant fall and then a small rise in graph 0~

10 s considerably smooth behavior in these three graphs 10~30 s. Whereas Figure 6 ~ Figure 8 depict the fashion

of angular velocities with respect to time. It can be observed in these graphs that there is a sinusoidal sort of

decrease in negative values in the beginning but soon there is a gradual increase till further minor decrease in

positive values and then from 10~30 s, the same streamlined style is experienced.
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Figure 3 The time history of 6,
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4 Conclusions

In this paper, the author aimed to apply computed torque controller system for 3-link robot manipulator and
stimulate the applied controller performance using MATLAB. The simulation results show the validity of the proposed
method and give the possibility of a computed torque control. Dynamic modeling is the basic element for controller
design of mechanisms. The structural properties of the derived dynamic equation were proved so that the vast control
strategies developed for the serial counterparts can be easily extended for controlling the three link manipulator. The
simulation results indicate the effectiveness of the proposed approach and demonstrate the satisfactory performance
compared to the conventional controller in the presence of the parameter uncertainties and un-modelled dynamics for
the motion control of manipulators. The developed control scheme can be further extended to make use in arm control
of manipulators for target capturing applications i.e., in space robotics. This study is useful for the future real time
implementation of motion control of space manipulators in complex dynamic scenario. The author has tried to show the
design of a PD controller for the robot manipulator by following computed torque method strategy to develop our

controllers. in order to try to find advantages of this control law by simulations.
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